

# High Precision, Rail-to-Rail Input and Output Operational Amplifier

#### Overview

SL8551 (single), SL8552 (dual) and SL8554 (quad) are high-precision, rail-to-rail input and output operational amplifiers. The chip uses offset correction technology, so it has very low offset voltage (typical value  $2\mu V$ ), and the offset voltage hardly changes with temperature and time.

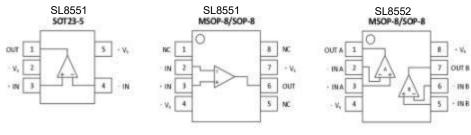
The chip supports single power supply and dual power supply. When powered by a single power supply, its power supply voltage range is  $\pm 2.3V$  to  $\pm 5.5V$ ; when powered by a dual power supply, its power supply voltage range is  $\pm 1.15V$  to  $\pm 2.75V$ .

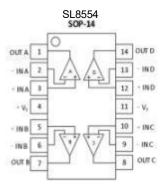
The package types of SL8551 are mainly SC70-5, SOT23-5, MSOP-8 and SOP-8. The package types of SL8552 are mainly MSOP-8 and SOP-8. The package type of SL8554 is mainly SOP-14. And the operating temperature range for all package types is  $-40^{\circ}$  to  $125^{\circ}$ .

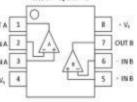
### Features

- Low offset voltage: 2µV (typical value)
- Zero drift: 0.03µv/°C
- Low noise: 30nV/√Hz
  - 0.1Hz to 10Hz : noise0.55µVPP
- High DC accuracy:
  - Open loop gain: 135dB
  - Power Supply Rejection Ratio (PSRR): 110dB
  - Common Mode Rejection Ratio (CMRR): 110dB
- Gain bandwidth product: 2MHz
- Quiescent current: 220µA (typical value)
- Supply voltage range: ±1.15V to ±2.75V
- Input and output rail to rail

#### Application


- Bridge amplifier
- Strain gauge
- Sensor applications
- Temperature measurement
- Electronic scale
- Medical devices





# Application

- Resistance temperature sensor
- Handheld test equipment

## **Pin distribution**







Pin distribution

# **Pin description**

| Pin<br>number | Symbol | Description                                                                                                   |  |  |
|---------------|--------|---------------------------------------------------------------------------------------------------------------|--|--|
| 1             | -IN    | The inverting input of the operational amplifier has an input voltage range from (VS-) to (VS+).              |  |  |
| 2             | +IN    | The non-inverting input of the operational amplifier has the same input voltage range as the inverting input. |  |  |
| 3             | +Vs    | Positive power supply terminal, whose voltage range is 2.3V to 5.5V ( $\pm$ 1.15V to $\pm$ 2.75V).            |  |  |
| 4             | -Vs    | Negative power supply terminal, connected to ground when single power supply<br>is used.                      |  |  |
| 5             | OUT    | Output of the operational amplifier.                                                                          |  |  |
| 6             | N/C    | No connection.                                                                                                |  |  |



# **Ordering information**

| Model      | Packing | Boxing quantity |
|------------|---------|-----------------|
| SL8551XC5  | SC70-5  | Reel 3000 PCS   |
| SL8551XT5  | SOT23-5 | Reel 3000 PCS   |
| SL8551XS8  | SOP-8   | Reel 4000 PCS   |
| SL8551XV8  | MSOP-8  | Reel 3000 PCS   |
| SL8552XS8  | SOP-8   | Reel 4000 PCS   |
| SL8552XV8  | MSOP-8  | Reel 3000 PCS   |
| SL8554XS14 | SOP-14  | Reel 2500 PCS   |

# Absolute maximum ratings (ambient temperature 25°C)

| Symbol                              | Parameter                            | Rating               | Unit |
|-------------------------------------|--------------------------------------|----------------------|------|
| Supply<br>voltage                   |                                      | +3,+6 (Single power) | V    |
| o                                   | Voltage                              | Vs0.5 to Vs++0.5     | V    |
| Single input                        | Differential voltage                 | ±5                   | V    |
|                                     | Operating temperature <sup>(2)</sup> | -55 to 150           |      |
| Temperatur<br>e range               | Storage temperature,Tstg             | –65 to +150          | °C   |
| _                                   | Junction temperature,TJ              | 150                  |      |
| Electrostatic<br>discharge<br>(ESD) | Human model(HBM)                     | 8                    | kV   |

Note:

1. Exceeding the absolute maximum ratings may cause permanent damage to the device. The above listed parameters are only some of the key parameters, and do not mean that other parameters not listed can exceed the normal range of use. Long-term operation at the absolute maximum ratings may affect the reliability of the device;

2. The device cannot exceed the maximum junction temperature at any time;



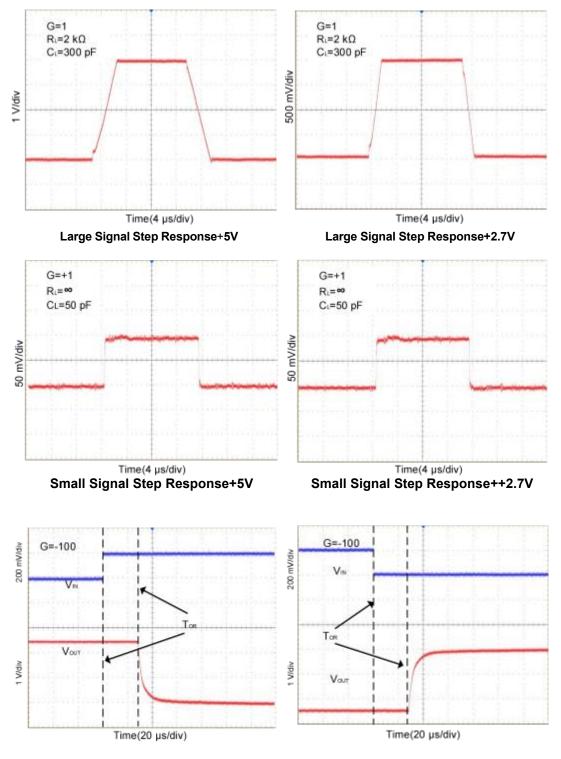
### **Electrical parameters**

 $VS=+5V \ , \ TA=+25^{\circ}C, \ VCM=VS/2, \ VO=VS/2, \ RL=10k\Omega \ , \ \ connect \ to \ VS/2 \ , \ unless \ otherwise \ stated.$ 

| Symbol          | Parameter                       | Condition                                                                                | Min      | Тур     | Max                   | Unit   |
|-----------------|---------------------------------|------------------------------------------------------------------------------------------|----------|---------|-----------------------|--------|
|                 |                                 | Input characteristics                                                                    |          |         |                       | I      |
| Vos             |                                 |                                                                                          |          | 2       | 15                    | μV     |
| VosTC           | Input offset voltage            | T^=-40℃ to +125℃                                                                         |          | 0.02    |                       | µV/°C  |
| В               | Input bias current              | Vcm=Vs/2                                                                                 |          | ± 100   |                       | PA     |
| los             | Input offset current            |                                                                                          |          | ± 100   |                       | PA     |
| Vсм             | Common mode input voltage range | T^=-40℃to+125℃                                                                           | Vs-      |         | Vs+                   | V      |
| CMRR            | Common mode rejection           | VS- <vcm<vs+< td=""><td>90</td><td>110</td><td></td><td>dB</td></vcm<vs+<>               | 90       | 110     |                       | dB     |
| CIVIER          | ratio                           | T <sub>A</sub> =-40℃ to+125℃                                                             | 85       |         |                       | dB     |
| AVOL            | Open loop voltage gain          | Vs-+0.3V <vo<vs+-0.3v< td=""><td>105</td><td>135</td><td></td><td>dB</td></vo<vs+-0.3v<> | 105      | 135     |                       | dB     |
| A.05            | Open loop voltage gain          | T <sub>A</sub> =-40℃ to +125℃                                                            | 100      |         |                       | dB     |
|                 |                                 | Output Characteristics                                                                   | 6        |         |                       |        |
| V <sup>он</sup> |                                 | R∟= 10KΩ                                                                                 | (Vs+)-12 | (Vs+)-4 |                       | mV     |
| V               |                                 | T <sup>A</sup> =-40℃ to +125℃                                                            | (Vs+)-8  |         |                       | mV     |
| Vol             |                                 | R∟= 10KΩ                                                                                 |          | (Vs-)+4 | (V <sup>s-</sup> )+12 | mV     |
| VOL             |                                 | T <sup>A</sup> =-40℃ to +125℃                                                            |          |         | (V <sup>s_</sup> )+18 | mV     |
|                 |                                 | Source current                                                                           | 55       | 65      |                       | mA     |
| laa             | Short circuit output            | T <sup>A</sup> =-40℃ to +125℃                                                            | 50       |         |                       | mA     |
| SC              | current                         | Sink Current                                                                             | 48       | 55      |                       | mA     |
|                 |                                 | T <sup>A</sup> =-40℃ to +125℃                                                            | 45       |         |                       | mA     |
|                 |                                 | Power supply characteris                                                                 | tics     |         |                       |        |
| PSRR            | Power Supply Rejection          | Vs=2.3V to 5.5V                                                                          | 90       | 110     |                       | dB     |
| TONIX           | Ratio                           | T <sub>A</sub> =-40℃ to +125℃                                                            | 80       |         |                       | dB     |
| Q               | Quiescent current               |                                                                                          |          | 220     | 290                   | μA     |
| •               | Quicecont current               | T <sub>A</sub> =-40℃ to +125℃                                                            |          |         | 380                   | μA     |
|                 |                                 | Noise characteristics                                                                    |          |         |                       |        |
| en              | Input voltage noise             | f=0. 1Hz to 10Hz                                                                         |          | 550     |                       | nVpp   |
| C.,             | Input voltage noise             | f=1KHz                                                                                   |          | 30      |                       | nV/√Hz |
|                 |                                 | Dynamic characteristic                                                                   | s        |         |                       |        |
| GBW             | Gain bandwidth product          |                                                                                          |          | 2       |                       | MHz    |
| SR              | Slew rate                       | G= ± 1                                                                                   |          | 0.8     |                       | V/µs   |
| tor             | Overload recovery time          | VIN×G=Vs                                                                                 |          | 50      |                       | μs     |



# **Electrical parameters**


VS= $\pm 2.7V$ , TA= $\pm 25^{\circ}C$ , VCM=VS/2, VO=VS/2, RL=  $10k\Omega$ , connect to VS/2, unless otherwise stated.

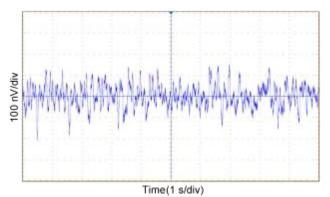
| Symbol | Parameter                          | Condition                                                                                | Min                   | Тур     | Мах      | Unit   |
|--------|------------------------------------|------------------------------------------------------------------------------------------|-----------------------|---------|----------|--------|
|        |                                    | Input characteristics                                                                    | 1                     |         | 1        |        |
| Vos    |                                    |                                                                                          |                       | 2       | 15       | μV     |
| VosTC  | Input offset voltage               | T <sub>A</sub> =-40℃to +125℃                                                             |                       | 0.02    |          | µV/°C  |
| В      |                                    | Vcm=Vs/2                                                                                 |                       | ± 100   |          | PA     |
| los    | Input offset current               |                                                                                          |                       | ± 100   |          | PA     |
| Vсм    | Common mode input<br>voltage range | T <b>A=-40℃ to +125</b> ℃                                                                | Vs-                   |         | (Vs+)    | V      |
| CMRR   | Common Mode Input                  | VS- <vcm<vs+< td=""><td>90</td><td>110</td><td></td><td>dB</td></vcm<vs+<>               | 90                    | 110     |          | dB     |
| OWNER  | Rejection Ratio                    | T^=-40℃ to +125℃                                                                         | 80                    | 100     |          | dB     |
| AVOL   | Open loop voltage gain             | Vs-+0.3V <vo<vs+-0.3v< td=""><td>105</td><td>135</td><td></td><td>dB</td></vo<vs+-0.3v<> | 105                   | 135     |          | dB     |
|        | opon loop voltage gain             | T^=-40℃ to +125℃                                                                         | 95                    |         |          | dB     |
|        |                                    | Output characteristics                                                                   |                       |         |          |        |
| Vон    |                                    | R∟= 10KΩ                                                                                 | (Vs+)-12              | (Vs+)-3 |          | mV     |
| Voll   |                                    | TA=-40℃ to +125℃                                                                         | (V <sup>s+</sup> )-18 |         |          | mV     |
| Vol    |                                    | R∟= 10KΩ                                                                                 |                       | (Vs-)+3 | (Vs-)+12 | mV     |
| VOL    |                                    | T <b>A=-40</b> ℃ to +125℃                                                                |                       |         | (Vs-)+18 | mV     |
|        |                                    | Source current                                                                           | 17                    | 24      |          | mA     |
| lsc    | Short circuit output               | T₄=-40℃ to +125℃                                                                         | 14                    |         |          |        |
| 100    | current                            | Sink current                                                                             | 15                    | 20      |          | mA     |
|        |                                    | T <sup>A</sup> =-40℃ to+125℃                                                             | 12                    |         |          |        |
|        |                                    | Power supply characterist                                                                | ics                   |         |          |        |
| PSRR   | Power supply rejection ratio       | Vs=2.3V to 5.5V                                                                          | 90                    | 110     |          | dB     |
|        |                                    | T <sub>A</sub> =-40℃ to +125℃                                                            | 80                    |         |          |        |
|        |                                    |                                                                                          |                       | 200     | 290      | μA     |
| Q      | Quiescent current                  | T <sup>A</sup> =-40℃ to +125℃                                                            |                       |         | 380      |        |
|        |                                    | Noise characteristics                                                                    |                       |         |          |        |
|        | Input voltage noise                | f=0. 1Hz to 10Hz                                                                         |                       | 550     |          | nVpp   |
| en     | Input voltage noise<br>density     | f=1KHz                                                                                   |                       | 30      |          | nV/√Hz |
|        |                                    | Dynamic characteristics                                                                  | 5                     |         |          |        |
| GBW    | Gain bandwidth product             |                                                                                          |                       | 2       |          | MHz    |
| SR     | Slew rate                          | G = ± 1                                                                                  |                       | 0.8     |          | V/µs   |



### Typical performance characteristics

VS=+5V, TA=+25°C, VCM=VS/2, VO=VS/2, RL=10k $\Omega$  connect to VS/2, unless otherwise stated.




Positive overload recovery

Negative overload recovery



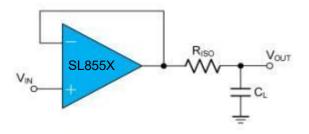
# Typical performance characteristics

VS=+5V, TA=+25  $^\circ\!\mathrm{C}$  , VCM=VS/2, VO=VS/2, RL= 10k $\Omega$  connect to VS/2  $\,$  , unless otherwise stated



. .

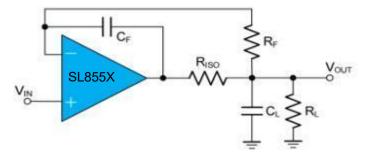
0. 1Hz to 10Hz noise




### 1. Working characteristics

The specified supply voltage of the SL855X series is 2.3V to 5.5V (±1.15V to ±2.75V). The specified operating temperature is -40°C to +125°C. Parameters related to supply voltage and temperature can be found in the Classic Characteristics section.

#### 2. Capacitive loads and their stability


The unity gain follower (buffer) is the circuit most sensitive to capacitive loads. Directly driving a capacitive load will reduce the phase margin of the operational amplifier, resulting in output ringing or even oscillation. In applications that require a larger capacitive load drive, an isolation resistor RISO needs to be added between the output and the capacitive load, as shown in Figure 1. The isolation resistor RISO and the capacitive load CL will add a zero point, thereby improving stability. The larger the value of RISO, the more stable its output. However, this treatment method will reduce the accuracy of the gain because RISO and the load resistor RL form a voltage divider network.



Picture 1. Introduction driving heavy capacitive loads

A better circuit is shown in Figure 2. This circuit has good stability and high DC accuracy. Using an RF resistor to connect the inverting terminal to the output can effectively improve the DC accuracy. CF and RISO are used to compensate for the loss of phase margin. The output signal is fed back to the inverting input through a high-pass element to ensure the phase margin of the overall feedback loop. For circuits without buffers, there are two other ways to improve the phase margin: 1) increase the gain of the operational amplifier, or 2) prevent a capacitor in parallel with the feedback resistor to compensate for the inverting input.





Picture 2. Directly drives capacitive loads with high DC accuracy

### 3. Input bias current clock feed through

The SL855X series uses switches to correct the inherent offset and drift of the operational amplifier. However, the internal switch will cause a certain sudden change in the input bias current at the moment of switching. These pulses are very short-lived and are not enough to be amplified by the amplifier, but they can be coupled to the output through the feedback network. The most effective way to prevent this phenomenon is to use a low-pass filter, such as an RC network.

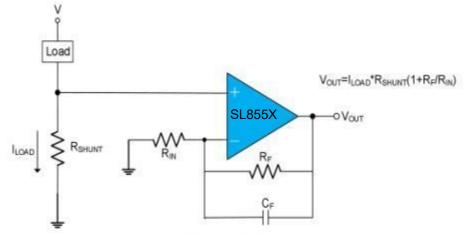
### 4. Layout guide

In order to achieve the best performance of the device, the following layout principles should be followed when designing the PCB.

A. Divide the ground into two parts: digital ground and analog ground, and reasonably plan the path for current to return to the ground to avoid the return of digital signals to analog signals. If a multi-layer PCB is used, set one of the layers as the ground, which not only helps to dissipate heat, but also effectively reduces EMI noise.

B. In order to minimize the size of parasitic capacitance and Seebeck effect, external devices (such as feedback resistors, etc.) should be as close to the device as possible.

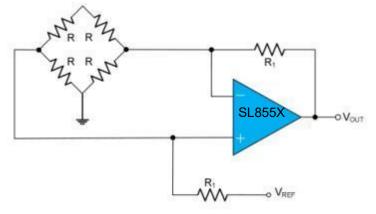
C. The wire of the input signal should be as short as possible and should be away from the power line or other digital signal lines.


D. A low ESR,  $0.1\mu$ F ceramic bypass capacitor should be connected between each power pin and the ground, and as close to the device as possible. In the case of a single power supply, use a capacitor connected between V+ and ground.

E. Consider adding a low-resistance, driven guard ring around the critical wiring. The guard ring can significantly reduce the leakage current of different potentials nearby.

### 5. Low-side current sensing



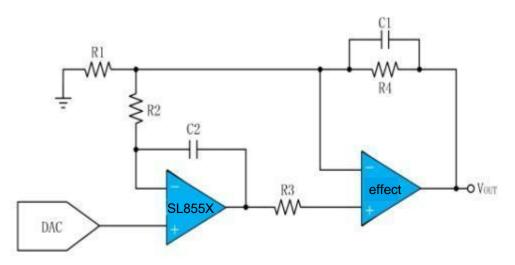

As shown in Figure 3, the operational amplifier forms a low-side current sampling circuit. The load current ( $I_{LOAD}$ ) generates a voltage difference across the resistor  $R_{SHUNT}$  and is amplified by the SL855X. When the power supply voltage remains unchanged, the output voltage range can be changed by changing the resistor  $R_{SHUNT}$  and the closed-loop amplification factor.



Picture 3. Low-side current sensing circuit

### 6. Bridge amplifier

As shown in Figure 4, the SL855X series forms a bridge amplifier.

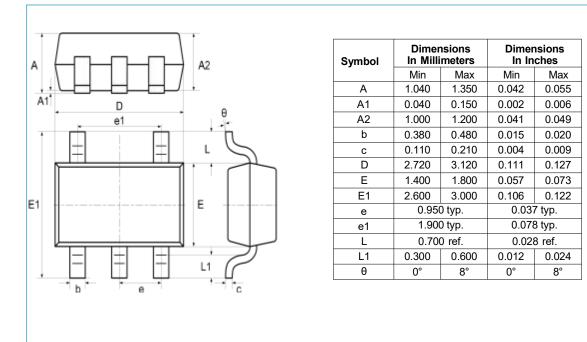



Picture 4. Bridge amplifier

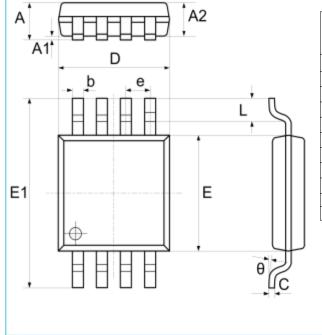
# 7. Programmable voltage source



As shown in Figure 5, the SL855X series, DAC, and power amplifier form a high-precision programmable power supply. The amplifier circuit is built using capacitors and resistors to amplify the output voltage of the DAC by a factor of 1+R4/R1. In situations where the input voltage varies over a wide range, the SL855X has the characteristics of high precision and low drift.




Picture 5. Programmable voltage source

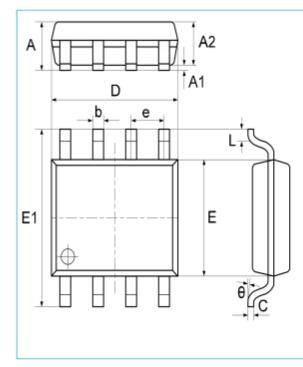



# Package information

SOT23-5

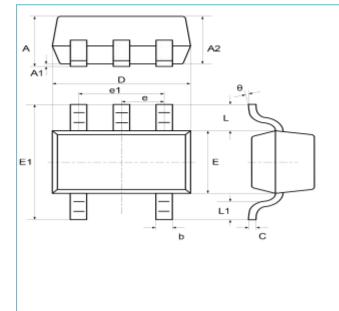


#### MSOP-8




| Symbol | Dimensions<br>In Millimeters |       | Dimensions<br>In Inches |        |  |
|--------|------------------------------|-------|-------------------------|--------|--|
|        | Min                          | Max   | Min                     | Max    |  |
| А      | 0.800                        | 1.100 | 0.033                   | 0.045  |  |
| A1     | 0.050                        | 0.150 | 0.002                   | 0.006  |  |
| A2     | 0.750                        | 0.950 | 0.031                   | 0.039  |  |
| b      | 0.290                        | 0.380 | 0.012                   | 0.016  |  |
| С      | 0.150                        | 0.200 | 0.006                   | 0.008  |  |
| D      | 2.900                        | 3.100 | 0.118                   | 0.127  |  |
| E      | 2.900                        | 3.100 | 0.118                   | 0.127  |  |
| E1     | 4.700                        | 5.100 | 0.192                   | 0.208  |  |
| е      | 0.650 typ.                   |       | 0.020                   | 6 typ. |  |
| L      | 0.400                        | 0.700 | 0.016                   | 0.029  |  |
| θ      | 0°                           | 8°    | 0°                      | 8°     |  |



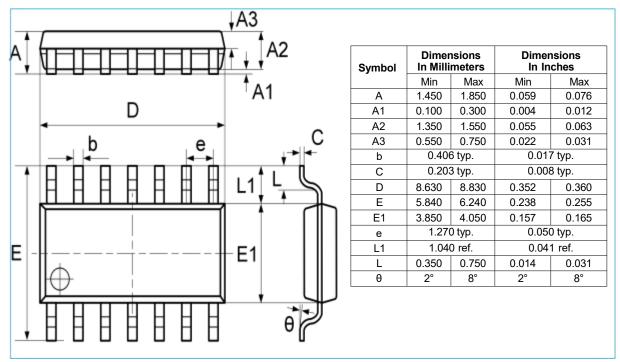

# Package information

SOP-8



| Symbol | Dimensions<br>In Millimeters |            | Dimensions<br>In Inches |        |
|--------|------------------------------|------------|-------------------------|--------|
| -      | Min                          | Max        | Min                     | Max    |
| А      | 1.370                        | 1.670      | 0.056                   | 0.068  |
| A1     | 0.070                        | 0.170      | 0.003                   | 0.007  |
| A2     | 1.300                        | 1.500      | 0.053                   | 0.061  |
| b      | 0.306                        | 0.506      | 0.013                   | 0.021  |
| С      | 0.203                        | 0.203 typ. |                         | 3 typ. |
| D      | 4.700                        | 5.100      | 0.192                   | 0.208  |
| Е      | 3.820                        | 4.020      | 0.156                   | 0.164  |
| E1     | 5.800                        | 6.200      | 0.237                   | 0.253  |
| е      | 1.270 typ.                   |            | 0.05                    | ) typ. |
| L      | 0.450                        | 0.750      | 0.018                   | 0.306  |
| θ      | 0°                           | 8°         | 0°                      | 8°     |

SC70-5




| Symbol | Dimensions<br>In Millimeters |        | Dimensions<br>In Inches |       |  |
|--------|------------------------------|--------|-------------------------|-------|--|
| -      | Min                          | Max    | Min                     | Max   |  |
| А      | 0.800                        | 1.100  | 0.035                   | 0.043 |  |
| A1     | 0.000                        | 0.100  | 0.000                   | 0.004 |  |
| A2     | 0.800                        | 0.900  | 0.035                   | 0.039 |  |
| b      | 0.150                        | 0.350  | 0.006                   | 0.014 |  |
| С      | 0.080                        | 0.150  | 0.003                   | 0.006 |  |
| D      | 1.8500                       | 2.150  | 0.079                   | 0.087 |  |
| E      | 1.100                        | 1.400  | 0.045                   | 0.053 |  |
| E1     | 1.950                        | 2.200  | 0.085                   | 0.096 |  |
| е      | 0.85                         | ) typ. | 0.026 typ.              |       |  |
| e1     | 1.200                        | 1.400  | 0.047                   | 0.055 |  |
| L      | 0.42                         | ref.   | 0.021 ref.              |       |  |
| L1     | 0.260                        | 0.460  | 0.010                   | 0.018 |  |
| θ      | 0°                           | 8°     | 0°                      | 8°    |  |



# Package information

SOP-14

